Exercise 2.7.6

For each of the following vector fields, plot the potential function $V(x)$ and identify all the equilibrium points and their stability.

$$
\dot{x}=r+x-x^{3}, \text { for various values of } r \text {. }
$$

Solution

The potential function $V(x)$ satisfies

$$
\dot{x}=r+x-x^{3}=-\frac{d V}{d x} .
$$

Multiply both sides by -1 .

$$
\frac{d V}{d x}=x^{3}-x-r
$$

Integrate both sides with respect to x, setting the integration constant to zero.

$$
V(x)=\frac{1}{4} x^{4}-\frac{1}{2} x^{2}-r x
$$

Plots of $V(x)$ versus x (to be thought of as two-dimensional rollercoasters) are shown below for $-1 \leq r \leq 1$; they don't change for even smaller or larger values of r.

